PRECISE TYPE INFERENCE
IN SCALA 3

]
Presentation [HTML|PDF], Report [HTML|PDF]

Matt Bovel @ LAMP/LARA, EPFL
July 7, 2022

https://mbovel.github.io/precise-type-inference-project/presentation.html
https://mbovel.github.io/precise-type-inference-project/presentation.pdf
https://mbovel.github.io/precise-type-inference-project/report.html
https://mbovel.github.io/precise-type-inference-project/report.pdf
mailto:matthieu@bovel.net
https://www.epfl.ch/labs/lamp/
https://lara.epfl.ch/w/
https://www.epfl.ch/fr/

OUTLINE

]
o What precise types? = Motivating example
= Singletons e Why not always infer them?
= Unions = Subtyping will save us?
= Match types = Implicits search

Overloads resolution
Other considerations

Type-level operations
Refinements

e Why not just fit expected result types? = Why case classes = Acl
= Code duplication = Syntactic Sugar = Ref
= Not trivial to implement e Furtherwork

e Precise mode = Always precise and widen?

» dependent values and functions = Distinct term-level constructs?
= Example with inferred types = Error types?
= Visibility of arguments to fields mapping = Type parameters?

= Dependent case classes e Theend

WHAT PRECISE TYPES?

SINGLETONS

Singletons are widened.

val vl = 3

val v2 = vl

UNIONS

If-then-else are typed with unions types, which are then widened.

val v3 /*: Int*/ = if ¢ then 1 else 2 /*: 1 | 2%*/

MATCH TYPES

val v4 /*: Boolean */ = x match
case _: String => true

case _ => false

But we can also type it as the matching match type if we write it explicitly:

type IsString[T <: Any] = T match {
case String => true
case _ => false }

val vb5: IsString[x.type] = x match
case _: String => true

case _ => false

TYPE-LEVEL OPERATIONS

import scala.compiletime.ops.int.*
val v6: Int = 42

val v7: Int = ve + 2

val v8: véb.type + 2 = v6 + 2

REFINEMENTS

class Foo(val x: Int)
val v9: Foo = Foo(1984)
val v10: Foo {val x: 1984} = Foo(1984) // error

See Refine types according to their constructor val’s singleton types #1262

https://github.com/lampepfl/dotty/issues/1262

MOTIVATING EXAMPLE

import scala.compiletime.ops.int.+

def vec(s: Int) = Vec(s).asInstanceOf[Vec {val size: s.type }]

def add(a: Int, b: Int) = (a + b).aslInstanceOff[a.type + b.type]

case class Vec(size: Int):
def sum(that: Vec {val size: Vec.this.size.type}) = vec(size)

def concat (that: Vec) = vec(add(size, that.size))

val v1l: Vec {val size: 13} = wvec(6) .concat (vec (7)) .sum(vec(13))

WHY NOT ALWAYS INFER THEM?

SUBTYPING WILL SAVE US?

Thanks to subtyping, we should always be able to replace a type by a more precise type
(cf. a subtype). Right?

def fl1(foo: Foo) = true

val v12 = Foo(1984)

f(vl2)

def f2[T] (a: T, b: T) = true

f2 (Foo(451), Foo(1984))

IMPLICITS SEARCH

Precising types can break previously working implicits search.

class A
class B extends A

class Inv|[X]

given inv: Inv[A] = Inv ()

def f£3[N] (x: N) (using Inv[N]) = 1984
val b = B()

f3(b: A)

f3[A] (b)
f3(b) (using inv)
£3(

b) // error: no given instance of type Inv/[B]

OVERLOADS RESOLUTION

Precising types can break previously working overloads resolution.

def f4(x: Int) = "C"
def f4(x: String | 1 | 2) = "D"
val cond = false

val y = 1f cond then 1 else 2

println (£4 (y))
val preciseY: 1 | 2 = if cond then 1 else 2

println (f4 (preciseY)) // error: ambiguous overload

General problematic setup: let £ be a function with two overloads respectively taking
two unrelated types C and D as arguments, let y be avariable that can be typed
eitheras C or C & D ,consider f (y) .

OTHER CONSIDERATIONS

e Usability: types that would just duplicate expressions are generally not useful to
help programmers to think.
e Performance: bigger types take more time to process.

WHY NOT JUST FIT EXPECTED RESULT TYPES?

CODE DUPLICATION

See tf-dotty example.

https://github.com/MaximeKjaer/tf-dotty/blob/master/modules/compiletime/src/main/scala/io/kjaer/compiletime/Shape.scala#L57-L95

NOT TRIVIAL TO IMPLEMENT

When normalization is introduced, we cannot simply fit the structure of the expected
type the the right hand-side:

val v13: vb.type = (v6 + 1) - 1

PRECISE MODE

dependent VALUES AND FUNCTIONS

Proposition: type everything precisely when a value or a function is annotated with the
dependent keyword.

dependent def precise() =

val vl = 1

val v2 = 2 + vl

dependent def 1sString(x: Any) = x match
case _: String => true
case => false

val v3 = 1sString(42)

val v4 = Foo(42)

The dependent keyword was first proposed in [1] and our implementation follows a similar but weaker semantic. In our case, dependent
simply instructs the system to type the body of the function “as precisely as possible”, while in [1] it means “as precise as its implementation”.

EXAMPLE WITH INFERRED TYPES

dependent def precise () =
val v1 /*: (v1: (1: Int))*/ =1
val v2 /*: (v2: (3: Int))**/ =2 4+ vl
dependent def isString(x: Any) /*: (x : Any) match A
case String => (true : Boolean)
case Any => (false : Boolean)
}*/ = x match
case _: String => true
case _ => false
val v3 /*: (false: Boolean) */ = 1sString(42)
val v4 /*: Foo {val x = 42} */ = Foo(42)

VISIBILITY OF ARGUMENTS TO FIELDS MAPPING

class D(val items: Seqg[Int])
dependent val d = D(List (1,

Canwereallytype D(its) as D {val items: its.type } ?

class D2 (its: Seqg[Int]):
val i1tems: Seqg[Int] = i1its.tolList

DEPENDENT CASE CLASSES

dependent case class Vec3(size: Int)

val v14: Vec3 {val size: 42} = Vec3(42)

Similar to Implement Dependent Class Type #3936

https://github.com/lampepfl/dotty/pull/3936

WHY CASE CLASSES

1. Conceptually similar to structures; it makes sense to consider arguments and fields
as the same thing for case classes.

2. Case classes cannot extend other case classes.

3. This plays well with the syntacticsugar D (1, 2, 3) .

SYNTACTIC SUGAR

dependent case class Vec4d (size: Int)
val v15: Vecd (42)= Vecd (42)

FURTHER WORK

ALWAYS PRECISE AND WIDEN?

Could we follow for constructors and basic operations the same approach as for if-
then-else: always infer a precise type but widen it afterward?

DISTINCT TERM-LEVEL CONSTRUCTS?

Why not provide different term-level constructs with precise return types?

import scala.compiletime.ops.int.+!

val v16 = voe +! vo6

case class E(x: Int)

val v17 = E.dependent (2)

ERROR TYPES?

Both example work with the current prototype!

dependent def asString(x: Any) = x match
case xX: String => Some (x)
case _ => None

val v18 /*: Nothing*/ = asString(42) .get

dependent def asString2(x: Any) = x match
case X: String => x
case _ => throw new Error ()

val v19 /*: Nothing*/ = asString2 (42)

Could we also get the precise error message?

TYPE PARAMETERS?

class Vecb[S <: Singleton & Int] (size: S)
def suml[S <: Singleton & Int] (a: Vecb5[S], b: Vecb[S]) = 27?27
suml (Vec5 (1), Vecb (2))

class Vec6[S <: Int @Precise] (size: S)
def sum2[S <: Int @Precise] (a: Vec6[S], b: Veco6[S]) = 227
sum?2 (Vec6 (1), Vec6(2))

class Vec/[S <: Int @Singleton] (size: S)
def sum3[S <: Int @Singleton] (a: Vec7[S], b: Vec/[S]) = 227
sum3 (Vec7 (1), Vec7(2)) // error

THE END

ACKNOWLEDGEMENTS

e Thanks to Sébastien Doeraene and Guillaume Martres for the discussions on
program elaboration on which section “Why not always infer them?” is based.

e Thanks to Fengyun Liu for his previous work and comments on implementing
dependent classes.
e Thanks to Martin Odersky and Viktor Kuncak for their precious feedback.

REFERENCES

[1] G. S. Schmid, O. Blanvillain, J. Hamza, and V. Kuncak, “Coming to terms with
your choices: An existential take on dependent types,” CoRR, vol.
abs/2011.07653, 2020, Available: https://arxiv.org/abs/2011.07653

https://arxiv.org/abs/2011.07653

