
PRECISE TYPE INFERENCE
IN SCALA 3
Presentation [|], Report [|]

 @ / ,

July 7, 2022

HTML PDF HTML PDF

Matt Bovel LAMP LARA EPFL

https://mbovel.github.io/precise-type-inference-project/presentation.html
https://mbovel.github.io/precise-type-inference-project/presentation.pdf
https://mbovel.github.io/precise-type-inference-project/report.html
https://mbovel.github.io/precise-type-inference-project/report.pdf
mailto:matthieu@bovel.net
https://www.epfl.ch/labs/lamp/
https://lara.epfl.ch/w/
https://www.epfl.ch/fr/

OUTLINE

What precise types?
Singletons
Unions
Match types
Type-level operations
Refinements

Motivating example
Why not always infer them?

Subtyping will save us?
Implicits search
Overloads resolution
Other considerations

Why not just fit expected result types?
Code duplication
Not trivial to implement

Precise mode
dependent values and functions

Example with inferred types
Visibility of arguments to fields mapping
Dependent case classes

Why case classes
Syntactic Sugar

Further work
Always precise and widen?
Distinct term-level constructs?
Error types?
Type parameters?

The end

Ack
Ref

WHAT PRECISE TYPES?

SINGLETONS

Singletons are widened.

val v1 /*: Int*/ = 3 /*: 3*/

val v2 /*: Int*/ = v1 /*: v1.type*/

UNIONS

If-then-else are typed with unions types, which are then widened.

val v3 /*: Int*/ = if c then 1 else 2 /*: 1 | 2*/

MATCH TYPES

By default, the result type of a match is the LUB of the result types of the cases

val v4 /*: Boolean */ = x match

 case _: String => true

 case _ => false

But we can also type it as the matching match type if we write it explicitly:

type IsString[T <: Any] = T match {

 case String => true

 case _ => false }

val v5: IsString[x.type] = x match

 case _: String => true

 case _ => false

TYPE-LEVEL OPERATIONS

import scala.compiletime.ops.int.*

val v6: Int = 42

val v7: Int = v6 + 2

val v8: v6.type + 2 = v6 + 2 // error

REFINEMENTS

See

class Foo(val x: Int)

val v9: Foo = Foo(1984)

val v10: Foo {val x: 1984} = Foo(1984) // error

Refine types according to their constructor val’s singleton types #1262

https://github.com/lampepfl/dotty/issues/1262

MOTIVATING EXAMPLE

import scala.compiletime.ops.int.+

def vec(s: Int) = Vec(s).asInstanceOf[Vec {val size: s.type }]

def add(a: Int, b: Int) = (a + b).asInstanceOf[a.type + b.type]

case class Vec(size: Int):

 def sum(that: Vec {val size: Vec.this.size.type}) = vec(size)

 def concat(that: Vec) = vec(add(size, that.size))

val v11: Vec {val size: 13} = vec(6).concat(vec(7)).sum(vec(13))

WHY NOT ALWAYS INFER THEM?

SUBTYPING WILL SAVE US?

Thanks to subtyping, we should always be able to replace a type by a more precise type
(cf. a subtype). Right?

def f1(foo: Foo) = true

val v12 = Foo(1984)

f(v12)

def f2[T](a: T, b: T) = true

f2(Foo(451), Foo(1984))

IMPLICITS SEARCH

Precising types can break previously working implicits search.

class A

class B extends A

class Inv[X]

given inv: Inv[A] = Inv()

def f3[N](x: N)(using Inv[N]) = 1984

val b = B()

f3(b: A)

f3[A](b)

f3(b)(using inv)

f3(b) // error: no given instance of type Inv[B]

OVERLOADS RESOLUTION

Precising types can break previously working overloads resolution.

General problematic setup: let f be a function with two overloads respectively taking
two unrelated types C and D as arguments, let y be a variable that can be typed
either as C or C & D , consider f(y) .

def f4(x: Int) = "C"

def f4(x: String | 1 | 2) = "D"

val cond = false

val y = if cond then 1 else 2

println(f4(y))

val preciseY: 1 | 2 = if cond then 1 else 2

println(f4(preciseY)) // error: ambiguous overload

OTHER CONSIDERATIONS

Usability: types that would just duplicate expressions are generally not useful to
help programmers to think.
Performance: bigger types take more time to process.

WHY NOT JUST FIT EXPECTED RESULT TYPES?

CODE DUPLICATION

See .tf-dotty example

https://github.com/MaximeKjaer/tf-dotty/blob/master/modules/compiletime/src/main/scala/io/kjaer/compiletime/Shape.scala#L57-L95

NOT TRIVIAL TO IMPLEMENT

When normalization is introduced, we cannot simply fit the structure of the expected
type the the right hand-side:

val v13: v6.type = (v6 + 1) - 1

PRECISE MODE

dependent VALUES AND FUNCTIONS

Proposition: type everything precisely when a value or a function is annotated with the
dependent keyword.

The dependent keyword was first proposed in and our implementation follows a similar but weaker semantic. In our case, dependent
simply instructs the system to type the body of the function “as precisely as possible”, while in it means “as precise as its implementation”.

dependent def precise() =

 val v1 = 1

 val v2 = 2 + v1

 dependent def isString(x: Any) = x match

 case _: String => true

 case _ => false

 val v3 = isString(42)

 val v4 = Foo(42)

[1]
[1]

EXAMPLE WITH INFERRED TYPES

dependent def precise() =

 val v1 /*: (v1: (1: Int))*/ = 1

 val v2 /*: (v2: (3: Int))**/ = 2 + v1

 dependent def isString(x: Any) /*: (x : Any) match {

 case String => (true : Boolean)

 case Any => (false : Boolean)

 }*/ = x match

 case _: String => true

 case _ => false

 val v3 /*: (false: Boolean) */ = isString(42)

 val v4 /*: Foo {val x = 42} */ = Foo(42)

VISIBILITY OF ARGUMENTS TO FIELDS MAPPING

Can we really type D(its) as D {val items: its.type } ?

class D(val items: Seq[Int])

dependent val d /*: D {val items: List[Int]}*/ = D(List(1, 2, 3))

class D2(its: Seq[Int]):

 val items: Seq[Int] = its.toList

DEPENDENT CASE CLASSES

Similar to

dependent case class Vec3(size: Int)

val v14: Vec3 {val size: 42} = Vec3(42)

Implement Dependent Class Type #3936

https://github.com/lampepfl/dotty/pull/3936

WHY CASE CLASSES

1. Conceptually similar to structures; it makes sense to consider arguments and fields
as the same thing for case classes.

2. Case classes cannot extend other case classes.
3. This plays well with the syntactic sugar D(1, 2, 3) .

SYNTACTIC SUGAR

dependent case class Vec4(size: Int)

val v15: Vec4(42)= Vec4(42)

FURTHER WORK

ALWAYS PRECISE AND WIDEN?

Could we follow for constructors and basic operations the same approach as for if-
then-else: always infer a precise type but widen it afterward?

DISTINCT TERM-LEVEL CONSTRUCTS?

Why not provide different term-level constructs with precise return types?

import scala.compiletime.ops.int.+!

val v16 /*: v6.type + v6.type*/ = v6 +! v6

case class E(x: Int)

val v17 /*: E {val x: 2}*/ = E.dependent(2)

ERROR TYPES?

Both example work with the current prototype!

dependent def asString(x: Any) = x match

 case x: String => Some(x)

 case _ => None

val v18 /*: Nothing*/ = asString(42).get

dependent def asString2(x: Any) = x match

 case x: String => x

 case _ => throw new Error()

val v19 /*: Nothing*/ = asString2(42)

Could we also get the precise error message?

TYPE PARAMETERS?

class Vec5[S <: Singleton & Int](size: S)

def sum1[S <: Singleton & Int](a: Vec5[S], b: Vec5[S]) = ???

sum1(Vec5(1), Vec5(2))

class Vec6[S <: Int @Precise](size: S)

def sum2[S <: Int @Precise](a: Vec6[S], b: Vec6[S]) = ???

sum2(Vec6(1), Vec6(2))

class Vec7[S <: Int @Singleton](size: S)

def sum3[S <: Int @Singleton](a: Vec7[S], b: Vec7[S]) = ???

sum3(Vec7(1), Vec7(2)) // error

THE END

ACKNOWLEDGEMENTS

Thanks to Sébastien Doeraene and Guillaume Martres for the discussions on
program elaboration on which section “Why not always infer them?” is based.

Thanks to Fengyun Liu for his previous work and comments on implementing
dependent classes.
Thanks to Martin Odersky and Viktor Kunčak for their precious feedback.

[1]

REFERENCES

G. S. Schmid, O. Blanvillain, J. Hamza, and V. Kuncak, “Coming to terms with
your choices: An existential take on dependent types,” CoRR, vol.
abs/2011.07653, 2020, Available: https://arxiv.org/abs/2011.07653

https://arxiv.org/abs/2011.07653

