
Precise type inference for Scala 3
Matt Bovel @LAMP/LARA, EPFL
Supervised by prof. Martin Odersky

July 7, 2022

S
ABSTRACT

cala supports a range of expressive types, including single‐
tons, unions, refinements and type-level operations. Unfor‐

tunately the usage of these types can be tedious in practice ei‐
ther because they get widened, or because they are not inferred
at all from term-level expressions, requiring manual casts
instead.

We discuss the problems and challenges of inferring more
precise types and compare different solutions. In particular,
we present a new precise inference mode that can be enabled
using a dedicated keyword. We also introduce dependent case
classes: data classes with fields precisely typed from the argu‐
ments passed to their constructors.

1 BACKGROUND

1.1 Widening

Scala’s type system has literal types (inhabited by a single value
known statically), term-references types (inhabited by a single
value unknown statically) and union types (join between arbi‐
trary types).

When no type annotation is present, these type are widened
when inferring the type of a variable or of a function, which
means that they get approximated by a supertype. For in‐
stance, in the following snippet, the three right hand-sides
have precise types, but get widened to Int when inferring the
types of the left hand-sides:
val x /*: Int*/ = 3 /*: 3*/
val y /*: Int*/ = x /*: x.type*/
val z /*: Int*/ = if c then 1 else 2 /*: 1 | 2*/

Note that this only concerns inferred types. In these cases,
one can still write an explicit type annotation to preserve the
precise types.

There are multiple reasons why the types are widened by
default:

Usability: at their core, types are approximations meant to
help developers verify the shape of data they are dealing
with. More often than not, types that are too precise
would actually make this harder. In most scenarios, the
information “this value is an Int” is simply more useful
that “this value is either 42, either the value of the vari‐
able Foo.x.z, which can be 451 or 1984”. Knowing when
a more precise type would actually be useful is not trivial,
and the Scala compiler will generally prefer familiar wide
types to types that would be too detailed.
Performance: keeping all precise types would make the
size of types significantly bigger, and with it the time

spent traversing them and their memory footprint.
Backward-compatibility: while it might seem at first that
the type of a term might always be replaced by one of its
subtypes, this is not the case in Scala because types are
not only descriptive but also play a central semantic role
and impact the elaboration of programs. In section 1.2, we
detail two examples: overload resolutions and implicits
search.

1.2 Types precision and program elaboration

Theoretically, sub-typing should allow us to replace a variable
with type T with a value of type S <: T. This the case even
when throwing inference into the mix as the typer is able to
choose the right precision to instantiate the type variable with
respect to the sub-typing constraints. In the following example
we can therefore safely assign types A or B to B()—or replace it
with any value x: S where S <: T:
class A
class B extends A
def f[T](x: T)(y: T => Int) = 0
val b = B()
f(b: A)((a: A) => 0)
f(b: B)((a: A) => 0) // T still instantiated to A

This however does not hold anymore when introducing
givens (a.k.a implicits) because the Scala compiler does not
guarantee to find a solution if one exists. Instead, the resolu‐
tion is best-effort, using a procedure seeking the right balance
between predictability, performance and expression-power.

Importantly, this procedure starts by instantiating type vari‐
ables that are constrained by arguments to reduce the search
space before looking for candidate implicits. This is why in the
following example, the code compiles if b is typed as A, but
not when if it gets the more precise type B:
class Inv[X]
given inv: Inv[A] = Inv()
def g[N](x: N)(using Inv[N]) = 42
val b = B()
g(b: A)
g[A](b)
g(b)(using inv)
g(b) // error: no given instance of type Inv[B]

Another area where increasing the precision of inferred
types can make a previously correct program fail to compile is
overloads resolution. As background: in Scala, dispatch is dy‐
namic on this but static on all other arguments (including on
the first argument of functions that are not methods). The
compiler chooses the most precise overload depending on the
type of the arguments.

mailto:matthieu@bovel.net
https://www.epfl.ch/labs/lamp/
https://lara.epfl.ch/w/
https://www.epfl.ch/fr/

Typing an argument with a more precise type can therefore
result in a more specific overload to be chosen.

But even more problematically, precising a type can also
lead to an ambiguity in overloads resolution. Consider the fol‐
lowing setup: let h be a function with two overloads respec‐
tively taking two unrelated types C and D as arguments, and
let y be a variable that can be typed either as C or C & D. In the
first case, the first overload will be chosen, but in the second
the compilation will fail.

The following example shows an instance of the problem
with C = Int and D = String | 1 | 2 and C & D = 1 | 2:
def h(x: Int) = "C"
def h(x: String | 1 | 2) = "D"
val cond = false
val y = if cond then 1 else 2
println(h(y))
val preciseY: 1 | 2 = if cond then 1 else 2
println(h(preciseY)) // error: ambiguous overload

The consequence of the way implicits search and overloads
resolution work is that we cannot increase the precision of
type inference for existing constructs without breaking code
that was previously compiling. That is the main reason why
we present new constructs in sections 2 and 3.

1.3 Precise typing of constructors and basic operations

In addition to types that are inferred from terms but widened
afterwards, there are two kind of terms for which precise
types would be useful but are currently not inferred at all.

The first one is classes constructors. Traditionally, the return
type of the constructor of a class C is trivially C. However,
when a constructor parameter can directly be mapped to the
value of a field in the resulting instance, the return type could
be more precise by refining the type of the field in question to
the type of the argument. In Scala, this can be achieved using a
refinement type, noted C {val a: A} and representing a sub-
type of C with the addition or overriding of the member a with
type A. The goal is for the following to work:
case class C(a: Int)
val c: C {val a: 2} = C(2) // not working

The second kind of terms for which more precise types
would be useful is basic operations on primary types. For
some of them, Scala provides equivalent at the type-level
through the scala.compiletime.ops package, but these are
currently not inferred from term-level operations. In the fol‐
lowing example, the + on the left hand-side denotes an infix
type in the scala.compiletime.ops.int package, while the +
on the right hand-side denotes the term-level operation on in‐
teger. The two are currently not related:
import scala.compiletime.ops.int.*
val x: Int = 42
val y: x.type + 2 = x + 2 // not working

Together, precise typing of classes constructors and basic
operations would ease the writing of dependent code, for in‐
stance for the classic example of sized lists:
case class Vec(size: Int):
 def concat(that: Vec) = Vec(size + that.size)
val v1: Vec {val size: 3} =
 Vec(1).concat(Vec(2)) // not working

As of now, this requires explicit casts to work:
def preciseVec(s: Int) =
 Vec2(s).asInstanceOf[Vec {val size: s.type}]
def preciseAdd(a: Int, b: Int) =
 (a + b).asInstanceOf[a.type + b.type]
case class Vec2(size: Int):
 def concat(that: Vec2) =
 preciseVec(preciseAdd(size, that.size))
val v2: Vec2 {val size: 3} =
 preciseVec(1).concat(preciseVec(2)) // works

2 PRECISE TYPING MODE

As discussed in section 1.2, always inferring precise types is
not an option. Instead, we define a special typing mode where:

1. Singleton types and unions are not widened,
2. Classes constructors applications and basic operations are

typed precisely.
We propose to enable this mode either with an explicit key‐

word, or using some heuristics on the result type.

2.1 Dependent methods and values

The precise inference mode is enables using the dependent
keyword, applicable both to defs and vals to mean that the
right hand-side should be precisely typed:
dependent def precise() =
 val x: /*: (x: Int)*/ = 1
 val y: /*: 2 + x.type*/ = 2 + x

The dependent keyword was first proposed in [1] and our
implementation follows a similar but shallower semantic. In
our case, dependent simply instructs the system to type the
body of the function “as precisely as possible”, while in [1] it
means “as precise as its implementation”.

2.2 Implementation

In the Scala compiler, typing is always done with respect to a
Context, which among other things contains a set of flags:
Modes. We add a Precise mode which is checked from 2
places:

In Namer.inferredResultType, we disable widening if
Precise is set.
In Applications.TypedApply, if Precise is set:

If the applied function is either a constructor, or the
apply method of the companion object of a case class,
we refine the result type for each argument that cor‐
responds to a public field.
If the applied function is a basic operation that has a
type-level equivalent, we use it as the result type of
the application.

For the precise types to be persisted in Tasty, they need to be
introduced by explicit casts. A drawback of this, is that it in‐
troduces many asInstanceOf in the type trees. For example,
dependent val z = x + x + 2 is transformed by the typer to:
dependent val z: (x: Int) + (x: Int) + (5: Int) =
 x.+(x).$asInstanceOf[(x: Int) + (x: Int)]
 .+(5).$asInstanceOf[(x: Int) + (x: Int) + (5: Int)]

While the asInstanceOf are erased and therefore do not in‐
duce a runtime cost, they significantly increase the size of the
trees and can impact compilation time.

[1]

[2]

[3]

2.3 Visibility of arguments to fields mapping

In our prototype, the type of any constructor argument that is
declared with the val keyword is used to refine the result type
in precise mode. However, this yields the important question
of whenever this information is public or not. As an example,
let’s consider the following class and constructor application:
class D(val items: Seq[Int])
dependent val d /*: D {val items: List[Int]}*/
 = D(List(1, 2, 3))

The refinement gives the guarantee to the user that the im‐
plementation of Seq used for the field items is the same as for
the provided argument. While correct in this version, this
could change in a future version where the field items would
not be directly initialized from the constructor argument:
class D2(its: Seq[Int]):
 val items: Seq[Int] = its.toList

It is currently not precised in the Scala specification if the
mapping from constructor parameters to fields is public or
not. We suggest that this should be the case for case classes
only.

As an alternative design, we could type precisely class con‐
structor only if the class is explicitly annotated by its author.
We present such a design in section 3.

3 DEPENDENT CASE CLASSES

In this section, we present an other solution for typing classes
constructor precisely which is based on a dependent keyword
at the class-level. This is similar to the approach taken in [1]
and builds upon [2].

The constructor of a class annotated as dependent will al‐
ways be typed precisely, without anything specific at the call-
site:
dependent case class Vec3(size: Int)
val v3: Vec3 {val size: 42} = Vec3(42)

In term of implementation, this is a more robust solution as
it does not require inspection and casts at the call-site; the con‐
structor can be typed once and for all when completing the de‐
notation for the case class and then be used transparently like
any other method type with a dependent result.

Furthermore, typing the constructor ensures that other fea‐
tures like type parameters and multiple parameter lists work
out-of-the-box and robustly:
dependent case class Vec4[T](size: Int)(foo: Int)
val v4: Vec4 {val size: 42} = Vec4[Int](42)(5)

We restrict the dependent keyword to case classes for three
reasons:

1. Case classes are conceptually similar to structures or data
classes; it makes sense to consider arguments and fields as
the same thing for them (while it would not for classes in
general).

2. Case classes cannot extend other case classes; they are flat
by design. This simplifies the implementation, as it avoids
the need to map the constructor arguments of a class to
the arguments of its super-constructor. This information is
currently not recorded in class denotations.

3. This plays well with the syntactic sugar described in sec‐
tion 3.1.

3.1 Syntactic sugar

Refinement syntax can be verbose as every field has to be
named. To make it easier to use, we introduce a constructor
syntactic sugar that refines the fields in the order they appear
in the constructor:
v4b: Vec4(42) = Vec4(42)

Note that this works for case classes as all arguments are
also public fields. The same would not hold for general cases
where fields can also be constructor-only or private.

4 FURTHER WORK

4.1 Infer match types

Match types [3] are another kind of types that would gain to
be inferred automatically to avoid code duplication:
type TypeOrdinal[T] = T match {
 case String => 1
 case Int => 2
}
def typeOrdinal[T](t: T): TypeOrdinal[T] = t match
 case _: String => 1
 case _: Int => 2

4.2 Extend widening

As discussed in section 1.2, one can not infer more precise
types everywhere without impacting program semantics.
However, we could try to follow for operations types and con‐
structors a similar approach as for term references and if-
else: always type them with a precise type, but widen them
after inference. With such a scheme however, extra care should
be taken to check that the impact on performance is
acceptable.

5 CONCLUSIONS

We presented a precise inference mode for Scala, and an alter‐
native way to type case classes precisely which is more robust
for this use-case.

Both solutions suffers from the fact that they require adding
a new keyword to the language which is a fundamental source
of complexity for the end of user. Before settling on such a so‐
lution, we would like to explore further solutions such as the
one described in section 4.2.

ACKNOWLEDGEMENTS

We would like thank Sébastien Doeraene, Guillaume
Martres for the discussions on program elaboration on which
section 1.2 is based, Fengyun Liu for his previous work and
comments on implementing dependent classes, and Martin
Odersky and Viktor Kunčak for their precious feedback.

REFERENCES
G. S. Schmid, O. Blanvillain, J. Hamza, and V. Kuncak, “Coming to terms with
your choices: An existential take on dependent types,” CoRR, vol. abs/2011.07653,
2020, Available: https://arxiv.org/abs/2011.07653
F. Liu, “Implement dependent class type.” 2018. Available:
https://github.com/lampepfl/dotty/pull/3936
O. Blanvillain, J. Brachthäuser, M. Kjaer, and M. Odersky, “Type-level program‐
ming with match types,” p. 70, 2021, Available:
http://infoscience.epfl.ch/record/290019

https://arxiv.org/abs/2011.07653
https://github.com/lampepfl/dotty/pull/3936
http://infoscience.epfl.ch/record/290019

