
Logically Qualified Types for Scala 3
Matt Bovel

matthieu@bovel.net
EPFL

Lausanne, Switzerland

Abstract
We present a new design and prototype implementation of

refinement types for Scala, enabling types to be refined with

logical predicates and statically checked by the compiler.

Unlike previous work, our system integrates qualified types

directly into the Scala type checker and performs subtyping

via a lightweight, compiler-internal solver based on E-Graphs

and expression normalization. The implementation builds

on earlier student work, which explored syntax design and

runtime checking mechanisms

CCS Concepts: • Software and its engineering → Com-
pilers; Constraints; Formal software verification.

Keywords: Refinement Types, Scala

1 Introduction
This talk presents a proposal and prototype implementation

of qualified types for Scala 3. A qualified type refines a base

type Twith a logical predicate p(x), written as {x: T with
p(x)}. It denotes the subset of values x of type T for which
p(x) holds. For example, {x: Int with x > 0} represents

the type of positive integers, and {x: List[Int] with
x.nonEmpty} the type of non-empty lists of integers.

Similar constructs exist in other languages under differ-

ent names: refinement types in Liquid Haskell [11], boolean
refinement types in F*, subset types in Dafny or subtypes in
Lean. We use the term logically qualified types or qualified
types for short in Scala to avoid confusion with the existing

refined types.
In essence, qualified types embed assertions in the type

system: to accept e: { x: T with p(x) }, the compiler

must prove that for any e: T, p(e) holds. In other words,

assert(p(e)) can never fail at runtime.

Embedding these checks in the type system brings three

key benefits. First, predicates are discharged at compile time,

eliminating runtime overhead and guaranteeing correctness

for all values, not just those tested at runtime. Second, quali-

fied types compose naturally, as they can be passed as type

arguments to construct more complex types without ad-

ditional boilerplate: { x: Int with x > 0 } => String
denotes a function that accepts only positive inputs, and

List[{ x: Int with x > 0 }] a list of positive integers.

Third, they make APIs more concise: predicates live in the

signature, removing the need for separate assertions and

improving IDE support and documentation.

2 Syntax and Predicate Language
Several syntactic variants were explored in the context of

Quentin Bernet’s Master’s thesis [1]. The syntax adopted in

this proposal, chosen for its clarity and compatibility with

existing Scala constructs, is described below.

{x: T with p(x)} is the long-form syntax for qualified

types. It introduces an explicit binder x for the value being
qualified, and is useful when a name is not already available,

for example in type aliases or function return types:

type Pos = {x: Int with x > 0}
def fill(n: Pos, v: Int):
{res: List[Int] with res.size == n} = ???

When the qualified value already has a name, for example

in a val or parameter declaration, the binder can be omitted.

This short-form reuses the existing name in the predicate

and desugars to the long form:

val x: Int with x > 0
// desugars to:
val x: {x: Int with x > 0}

In addition to surface syntax, predicates must satisfy se-

mantic restrictions to ensure they can be encoded into a

logical form suitable for static reasoning. In particular, pred-

icates must be pure: they must return the same result when-

ever evaluated with the same argument, during and across

program executions.

To reflect this, the predicate language is restricted to a

fragment of Scala consisting of constants, stable identifiers,

field selections over val fields, term applications, type appli-

cations, and constructors of case classes without initializers.

Functions called inside predicates are expected to be pure, but

the system does not currently enforce this property mechan-

ically. It is considered a responsibility of the programmer to

avoid impure functions in this context.

3 Selfification
Scala already supports precise types such as literal types: the

literal 42 can be given the singleton type 42. However, this
precision is typically lost due to widening: val x = 42 is in-
ferred to have type Int, unless an explicit type annotation is

provided: val x: 42 = 42. Qualified types follow the same

principle: they are not inferred from terms by default. This

avoids changing the types that Scala would normally assign,

preserving source compatibility and avoiding a proliferation

of fine-grained types that could impact performance.

https://orcid.org/0009-0005-5132-0279
https://ucsd-progsys.github.io/liquidhaskell-tutorial/Tutorial_01_Introduction.html
https://fstar-lang.org/tutorial/book/part1/part1_getting_off_the_ground.html#boolean-refinement-types
https://fstar-lang.org/tutorial/book/part1/part1_getting_off_the_ground.html#boolean-refinement-types
https://dafny.org/latest/DafnyRef/DafnyRef#sec-subset-types
https://lean-lang.org/doc/reference/latest/Basic-Types/Subtypes/
https://lean-lang.org/doc/reference/latest/Basic-Types/Subtypes/
https://scala-lang.org/files/archive/spec/3.4/03-types.html#refined-types


Matt Bovel

Instead, qualified types must be written explicitly. When

such a type is expected, the compiler attempts to selfify
the expression: that is, to give e: T the qualified type {x:
T with x == e}. This allows expressions to be lifted into

types, as long as they are valid predicates under the restric-

tions described in the previous section.

val x: (Int with x == 42) = 42
val y: (Int with y == n + 2) = n + 2

4 Runtime checks
When a value’s properties cannot be verified statically, run-

time checks can be performed using pattern matching (as

implemented in [1]):

type ID = {s: String with s.matches(idRegex)}
"12e7-e89b-12d3" match
case _: ID => // s matches idRegex
case _ => // s does not match idRegex

When the program should fail if the predicate is not satis-

fied, the runtimeChecked method can be used. It performs

a dynamic check and throws an exception if the predicate

does not hold. This mechanismwas implemented by Valentin

Schneeberger as part of his Bachelor’s thesis [8].

As with pattern matching in Scala more generally, match-

ing against type parameters is not supported, since type

arguments are erased at runtime. For example, one cannot

match against a List[ID] or a ID => String type. For col-

lections and in others cases, this limitation can be lifted by

defining a custom TypeTest instance.

5 Subtyping
To determine whether a qualified type {x: T with p(x)} is
a subtype of another {y: S with q(y)}, the system checks

if T <: S and if the predicates are related by logical implica-

tion—that is, if p(x) implies q(x) for all x.
To achieve this, our implementation uses a lightweight

custom solver designed to handle common cases efficiently.

It combines equality reasoning, normalization, and predicate

inlining from both types and definitions.

Equality reasoning. The solver is based on the E-Graph

data structure, originally introduced by Nelson [5] and more

recently popularized through egg [12]. E-Graphs efficiently

compute the congruence closure of a set of equalities, allow-

ing the solver to track when different expressions are known

to be equivalent. For example, from v == a and a > 3, it
can deduce v > 3.

Normalization. The solver also performs syntactic nor-

malization to bring predicates into canonical form. This in-

cludes reordering and regrouping terms in sums and prod-

ucts over Int and Long. For example, x + 3 * y and 2 *
y + x + y are treated as equivalent. This is similar to the

ring tactic in Coq and the ring_nf tactic in Lean.

Qualifiers flattening and unfolding. When a predicate

refers to a valuewhose qualified type is known, the solver can

inline the associated predicate. For example, given y: Int
with y == x + 1, the predicate v == y + 1 is flattened

into y == x + 1 && v == y + 1, allowing the solver to

conclude v == x + 2. If a referenced term does not have a

qualified type, the solver can instead inspect its local defini-

tion directly and apply selfification on demand. For example,

if y is defined as val y: Int = x + 1, the solver assumes

y == x + 1, leading to the same conclusion. This form of

local unfolding complements type-based flattening and helps

eliminate trivial indirections.

Compatibility with other Scala types. Qualified types

integrate with other parts of the Scala type system. For exam-

ple, a literal type 1 is a subtype of {x: Int with x == 1},
and therefore also of {x: Int with x > 0}.

6 Related Work
In the Scala ecosystem, libraries such as Refined[10] and

Iron[4], offer user-level encodings of refinement types us-

ing opaque type aliases and implicit evidences. Compared

to these approaches, our system aims to increase expres-

siveness, reduce boilerplate, and improve performance by

integrating refinement checks directly into the compiler.

A previous prototype for refinement typing in Scala was

presented at the Scala Symposium 2016 [7]. That design

implemented a second type-checking phase and delegated

predicate checking to the Stainless verifier [3]. It required a

separate inference algorithm which proved difficult to im-

plement. Although the architecture was not pursued further,

it has been the a source of inspiration for the present work.

7 Future Work
Our immediate next step is to submit a SIP proposal to inte-

grate qualified types into the Scala 3 compiler.

Longer-term goals include formalizing the system, prov-

ing its soundness, and potentially building on foundations

like those developed for Liquid Haskell [2] and in work on

refinement-typed Featherweight Java [9].

While the current solver is designed to be lightweight and

predictable, we envision extending it with SMT solvers such

as Princess [6] to handle predicates beyond its current scope.

This would enable more complete reasoning about theories

like linear arithmetic and algebraic data types—beyond the

limited normalization rules currently implemented.

Additional directions include support for existentials in-

side predicates, enabling abstraction over unknown values,

and flow-sensitive typing, which would allow refining types

based on control-flow information.

https://docs.scala-lang.org/scala3/reference/other-new-features/type-test.html
https://rocq-prover.org/doc/V9.0.0/refman/addendum/ring.html
https://leanprover-community.github.io/mathlib4_docs/Mathlib/Tactic/Ring/RingNF.html
https://github.com/fthomas/refined
https://github.com/Iltotore/iron
https://github.com/epfl-lara/stainless


Logically Qualified Types for Scala 3

Acknowledgments
We would like to thank Viktor Kunčak, Martin Odersky,

Sébastien Doeraene, Guillaumes Martes, Dimi Racordon, Eu-

gène Flesselle, and Hamza Remmal for their guidance and

helpful discussions.

References
[1] Quentin Bernet. 2024. Syntax and Runtime Checks for Qualified Types

in Scala 3. Master’s thesis. École Polytechnique Fédérale de Lausanne

(EPFL), Lausanne, Switzerland.

[2] Michael H. Borkowski, Niki Vazou, and Ranjit Jhala. 2024. Mechanizing

Refinement Types. Proc. ACM Program. Lang. 8, POPL, Article 70 (Jan.
2024), 30 pages. doi:10.1145/3632912

[3] Jad Hamza, Nicolas Voirol, and Viktor Kunčak. 2019. System FR: for-

malized foundations for the stainless verifier. Proc. ACMProgram. Lang.
3, OOPSLA, Article 166 (Oct. 2019), 30 pages. doi:10.1145/3360592

[4] Iltotore. 2021. Iron: A compile-time and runtime refinement library

for Scala 3. https://github.com/Iltotore/iron. Accessed: 2025-07-17.
[5] Greg Nelson and Derek C. Oppen. 1980. Fast Decision Procedures

Based on Congruence Closure. J. ACM 27, 2 (April 1980), 356–364.

doi:10.1145/322186.322198
[6] Philipp Rümmer. 2008. A Constraint Sequent Calculus for First-Order

Logic with Linear Integer Arithmetic. In Proceedings, 15th Interna-
tional Conference on Logic for Programming, Artificial Intelligence and
Reasoning (LNCS, Vol. 5330). Springer, 274–289.

[7] Georg Stefan Schmid and Viktor Kuncak. 2016. SMT-based checking of

predicate-qualified types for Scala. In Proceedings of the 2016 7th ACM
SIGPLAN Symposium on Scala (Amsterdam, Netherlands) (SCALA
2016). Association for Computing Machinery, New York, NY, USA,

31–40. doi:10.1145/2998392.2998398
[8] Valentin Schneeberger. 2024. Runtime Checks for Qualified Types in

Scala 3. Bachelor’s thesis. École Polytechnique Fédérale de Lausanne
(EPFL), Lausanne, Switzerland.

[9] Ke Sun, Di Wang, Sheng Chen, Meng Wang, and Dan Hao. 2024. For-

malizing, Mechanizing, and Verifying Class-Based Refinement Types.

In 38th European Conference on Object-Oriented Programming (ECOOP
2024) (Leibniz International Proceedings in Informatics (LIPIcs), Vol. 313),
Jonathan Aldrich and Guido Salvaneschi (Eds.). Schloss Dagstuhl

– Leibniz-Zentrum für Informatik, Dagstuhl, Germany, 39:1–39:30.

doi:10.4230/LIPIcs.ECOOP.2024.39
[10] Frank S. Thomas. 2015. refined: Refined is a Scala library for refinement

types. https://github.com/fthomas/refined. Accessed: 2025-07-17.
[11] Niki Vazou, Eric L. Seidel, Ranjit Jhala, Dimitrios Vytiniotis, and Simon

Peyton-Jones. 2014. Refinement types for Haskell. In Proceedings of the
19th ACM SIGPLAN International Conference on Functional Program-
ming (Gothenburg, Sweden) (ICFP ’14). Association for ComputingMa-

chinery, New York, NY, USA, 269–282. doi:10.1145/2628136.2628161
[12] Max Willsey, Chandrakana Nandi, Yisu Remy Wang, Oliver Flatt,

Zachary Tatlock, and Pavel Panchekha. 2021. egg: Fast and extensible

equality saturation. Proc. ACM Program. Lang. 5, POPL, Article 23 (Jan.
2021), 29 pages. doi:10.1145/3434304

https://doi.org/10.1145/3632912
https://doi.org/10.1145/3360592
https://github.com/Iltotore/iron
https://doi.org/10.1145/322186.322198
https://doi.org/10.1145/2998392.2998398
https://doi.org/10.4230/LIPIcs.ECOOP.2024.39
https://github.com/fthomas/refined
https://doi.org/10.1145/2628136.2628161
https://doi.org/10.1145/3434304

	Abstract
	1 Introduction
	2 Syntax and Predicate Language
	3 Selfification
	4 Runtime checks
	5 Subtyping
	6 Related Work
	7 Future Work
	Acknowledgments
	References

